If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=144169
We move all terms to the left:
a^2-(144169)=0
a = 1; b = 0; c = -144169;
Δ = b2-4ac
Δ = 02-4·1·(-144169)
Δ = 576676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{576676}=\sqrt{4*144169}=\sqrt{4}*\sqrt{144169}=2\sqrt{144169}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{144169}}{2*1}=\frac{0-2\sqrt{144169}}{2} =-\frac{2\sqrt{144169}}{2} =-\sqrt{144169} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{144169}}{2*1}=\frac{0+2\sqrt{144169}}{2} =\frac{2\sqrt{144169}}{2} =\sqrt{144169} $
| 2x2+13x+15=0 | | 6x7x=7x4 | | 2x+7=7-5 | | x/10-8=9 | | 7(x-3)=4(2x-1) | | x+4-6=6-5x-2 | | y=11-3×^2 | | -2=(s+8)-3s | | x+4-6x=-5x-2 | | 9+2|4x-3|=9 | | 4(x+5)+6=3(2x+3) | | 8+3x=38-7x | | 0.11=0.33^a | | 4+9y/7=7 | | 2.3+4.4y-3.7=16.4 | | 5p-14=-(p+-8) | | x3+4x2+4x=-1 | | 6x+9=5×+15 | | 4c-11=7c+15 | | x^2-6x-49=0 | | 61+17x=1+19x | | 5x-27-3x=4+8-x | | 2.5(t-2)+7=-5 | | (y-7/3)=(y-2/4) | | 7d-11=52 | | 6(x-8)+2x=-88 | | X-2+x-1=2x-4 | | (y-7)/3=(y-2)/4 | | 3x=108−9x | | (x)=4x^2-3x+1 | | 90-d=180-d | | 3(8-3i)=5(2+I) |